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Summary. A general formulation is presented for the 
verification of isotonic transport and for the assign- 
ment of a degree of osmotic coupling in any epithelial 
model. In particular, it is shown that the concen- 
tration of the transported fluid in the presence of 
exactly equal bathing media is, in general, not a 
sufficient calculation by which to decide the issue of 
isotonicity of transport. Within this framework, two 
epithelial models are considered: ( i )A nonelectrolyte 
compartment model of the lateral intercellular space 
is presented along with its linearization about the 
condition of zero flux. This latter approximate model 
is shown to be useful in the estimation of deviation 
fiom isotonicity, intraepithelial solute polarization 
effects, and the capacity to transport water against a 
gradient. In the case of uphill water transport, some 
limitations of a model of fixed geometry are indicated 
and the advantage of modeling a compliant inter- 
space is suggested. (2) A comprehensive model of cell 
and channel is described which includes the major 
electrolytes and the possible presence of intra- 
epithelial gradients. The general approach to verifi- 
cation of isotonicity is illustrated for this numerical 
model. In addition, the insights about parameter 
dependence gained from the linear compartment mo- 
del are shown to be applicable to understanding this 
large simulation. 

Key words: isotonic epithelial transport, lateral in- 
tercellular space, linearized Kedem-Katchalsky equa- 
tions, intraepithelial solute polarization 

Glossary 

Subscripts 

Compartments 
M Mucosal bath 
S Serosal bath 
E Extracellular channel 

Membranes 

A Tight junction 
L Lateral membrane bounding the intercellular 

space 
M Composite mucosal membrane comprised of 

tight junction and lateral membrane 
B Basement membrane 

Intensive Variables 

(~=M, S or E references compartment subscripts) 
Co Reference salt concentration, mOsm/cm 3 
C~ Difference from reference, Co, of salt concen- 

tration in compartment c~, mOsm/cm 3 
P~ Hydrostatic pressure, mmHg 
C~ Mucosal impermeant species concentration, 

mOsm/cm ~ 

Membrane Properties 

(fi refers to any membrane subscript) 
A~ Membrane area, cm z 
Lp~ Hydraulic conductivity, cm/sec mmHg 
L~ (=Ar Hydraulic conductivity, 

cm 3/sec mmHg 
ap Reflection coefficient 
h~ Salt permeability, cm/sec 
H_r (=Aa.ha) Salt permeability, cma/sec 
C a Difference of mean membrane salt concentration 

from the reference Co, mOsm/cm 3 
Lp Epithelial hydraulic conductivity, cm3/secmmHg 
a Epithelial reflection coefficient 
H Epithelial salt permeabilty, cm3/sec 

LLB- LLLB LM B- LMLB 
LL + LB LM + L~ 

Flows 

(fl refers to any membrane subscript) 
J~ Transmembrane volume flow, cm3/sec 
Jsp Transmembrane salt flux, mOsm/sec 
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N Metabolically driven salt transport into the lat- 
eral intercellular space, mOsm/sec 

Jr Transepithelial volume flow, cm3/sec 
J~ Transepithelial salt flux, mOsm/sec 

Derived Variables 

C R Ratio of transepithelial salt flux to water flow 
(reabsorbate concentration), mOsm/cm a 
Osmotic coupling coefficient, (Co/CR) 

C~, Mucosal equilibrium concentration - mucosal 
deviation from reference for which reabsorbate 
concentration is equal to mucosal bath con- 
centration (serosa at reference), mOsm/cm 3 

C~ Serosal equilibrium concentration - serosal de- 
viation from reference for which reabsorbate 
concentration is equal to serosal bath concen- 
tration (mucosa at reference), mOsm/cm 3 

C* Mucosal deviation from reference for which re- 
absorbate concentration is equal to the reference 
concentration (serosa at reference), mOsm/cm 3 

C Strength of transport - maximum salt gradient 
against which volume can be transported, 
mOsm/cm 3 

The mechanism of coupling of solvent and solute 
fluxes in epithelial transport has been a central prob- 
lem in epithelial physiology. Investigations into this 
issue typically involve a transporting epithelium sus- 
pended between mucosal and serosal bathing media 
and serial observations of the volume and compo- 
sition of each bath. For the so-called "leaky" epi- 
thelia, two observations are held with certainty: (1) 
the epithelium is capable of transporting water up a 
chemical potential step (Diamond, 1964a; Whitlock 
& Wheeler, 1964) and (2) between equiosmolar bath- 
ing media the epithelium will transport solution so as 
to maintain identical tonicities of each bath within 
the limits of experimental observation (approximately 
2 %) (Diamond, 1964b; Whitlock & Wheeler, 1964). 
This has been termed "isotonic transport" and is 
found even as the osmolality of both bathing media is 
simultaneously varied over a wide range. 

Neither of these observations is strictly compat- 
ible with modeling an epithelium as a single mem- 
brane described by the phenomenological equations 
of Kedem and Katchalsky. Such a model can trans- 
port NaC1 against a chemical gradient but is inca- 
pable of uphill water transport. With a sufficiently 
large water permeability, volume flow could be ac- 
counted for by an osmotic force too small to be 
detected experimentally, but (with certain exceptions 
discussed below) measured water permeabilities have 
been too small to allow such a simple interpretation. 

Consequently several mathematical models of 
varying complexity and comprehensiveness that al- 
low active transport of NaC1 across the baso-lateral 
cell surface to power transepithelial water transport 
have been proposed. Even in the simplest models, 
however, essential nonlinearities (in the state variables) 
of solute-solvent coupling have severely limited ana- 
lytic reduction. The understanding of such models has 
often been dependent upon observations on numeri- 
cal experiments, i.e. parameter variation. In this pa- 
per, after reviewing this hierarchy of models, we 
develop a general mathematical framework for their 
comparison. Within this framework we reconsider in 
detail a simple compartmental model and show that 
a linear analysis of such a model yields an accurate 
approximation when bathing media are nearly equal. 
Then, within the general framework, we examine a 
polyelectrolyte, distributed parameter, epithelial mod- 
el. It is shown that the linearized compartment 
model yields important qualitative insight into the 
behavior of the comprehensive epithelial simulation. 

In contrast to previous expositions of isotonically 
transporting epithelia, our approach emphasizes the 
behavior of epithelial models when the composition 
of the bathing media is varied. The effects of solute- 
solvent coupling are manifest in simulations of water 
transport between equal media or against an osmotic 
gradient as well as in simulations of attempts to drive 
transepithelial water flow by the imposition of os- 
motic gradients (Lp determinations). The assessment 
of model adequacy must be made in view of model 
predictions for all of these experimental maneuvers. 

Background of the Problem 

Curran and Macintosh (1962) demonstrated that so- 
lute input into a compartment bounded by two mem- 
branes with unequal reflection coefficients could 
drive trans-compartmental water flow. They suggest- 
ed that such a model might be applicable to epithelial 
transport but they declined to speculate on the 
anatomical locus of the "middle compartment." The 
Curran-Maclntosh model was analyzed in complete 
mathematical detail by Patlak, Goldstein and Hoff- 
man (1963) who showed that qualitatively such an 
arrangement could accurately represent epithelial be- 
havior. Whitlock and Wheeler (1964) reported that 
this analysis was in agreement with their data and 
proposed that the lateral intercellular space was the 
"middle compartment" bounded by lateral cell mem- 
brane and basement membrane. 

Diamond (1964b) attempted to test this '~ 
membrane effect" quantitatively. In a large series of 
experiments, rabbit gallbladders transported from 
10-50 % of their mucosal contents and then the ionic 
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composition of the transported fluid as well as that of 
the remaining mucosal contents was determined. 
Within 3 ~, the tonicity of each solution was identi- 
cal. With Diamond's estimates of the solute transport 
rate and cell water permeability, a simplified com- 
partmental model predicted a grossly hypertonic re- 
absorbate when transporting between two equios- 
molar media. It was felt that such results clearly 
disqualified the model. 

Nevertheless, further work of Tormey and Dia- 
mond (1967) suggested that the lateral intercellular 
space was at least part of the route of transepithelial 
volume flow. In a companion paper to these obser- 
vations, Diamond and Bossert (1967) suggested the 
"standing gradient hypothesis" as a means by which 
the lateral intercellular space could remain the locus 
of coupling of solute and solvent fluxes and still yield 
isotonic transport between equiosmolar media. In 
this model, the assumption of a well-stirred lateral 
intercellular compartment (channel) was discarded. 
Instead, solute entered the channel near its apex, 
creating local hypertonicity, which gradually equili- 
brated (via solvent influx across the lateral cell wall) as 
the channel contents flowed to the serosa. In this 
model, channel geometry was crucial. In one set of 
calculations, a channel radius of 0.1 micron yielded 
isotonic transport while for a radius of 1.0 micron the 
reabsorbate was grossly hypertonic. Using a linear 
approximation to the Diamond-Bossert differential 
equation, Segel (1970) was able to derive an analyti- 
cal expression for the tonicity of standing gradient 
transport and showed that the significant geometric 
parameter in its determination was LZ/r where L is 
channel length and r channel radius. 

A.E. Hill (1975a), however, raised serious objec- 
tions to the standing gradient model. His solution of 
the Diamond-Bossert differential equation with "best 
guesses" for the parameters of several epithelia re- 
sulted in grossly hypertonic transport. Hill (1975b) 
considered the possibility of solvent flux across the 
tight junction into the lateral intercellular space, but 
again his calculations would not predict isotonic 
transport between equiosmolar bathing media. Dia- 
mond (1978) objected that Hill's parameter choices 
were wrong. 

In contrast to the pessimistic calculations of Hill, 
Sackin and Boulpaep (1975) presented a detailed 
model of transport across Necturus proximal tubule 
claiming that both a standing gradient model and a 
compartment model were compatible with isotonic 
transport. With uniform solute input along the entire 
length of the channel, their continuous model pre- 
dicted only small solute gradients within the in- 
tercellular space, and thus suggested that a compart- 
ment model would be adequate to represent this 

tissue. Indeed, for the Necturus proximal tubule (with 
a solute transport rate about one-tenth of Diamond's 
estimation for rabbit gallbladder) a compartment 
model predicted reabsorbtion between 1 ~ and 18 
hypertonic to the bathing media. 

In a series of papers (Mikulecky, 1977; Mikul- 
ecky, Wiegand & Shiner, 1977; Mikulecky & Tho- 
mas, 1978), Mikulecky and co-workers have applied 
network thermodynamics to coupled flows across 
composite membrane systems and have also applied 
it to a model of salt and water flow across the kidney 
proximal tubule (Thomas & Mikulecky, 1978). 
Numerical solutions of the proximal tubular model 
were done using nonlinear circuit simulators. The 
authors state that the network method has many 
advantages over other approaches and say (Thomas 
& Mikulecky, 1978), "Compared with conventional 
compartmental analysis this approach can give so- 
lutions with fewer simplifying assumptions, requires 
only a simple circuit description in the language of 
the simulator on hand, easily handles nonlinear 
couplings of flows and forces, and suffers none of 
the shortcomings inherent in traditional 'electrical 
equivalent circuit' approach to compartmental flow 
problems." 

In our own mathematical model of Necturus gall- 
bladder (Weinstein & Stephenson, 1978, 1979) we 
found, in agreement with Sackin and Boulpaep, that 
concentration gradients along the length of the chan- 
nel were relatively small. This reflected our choice of 
uniform solute pumps down the channel, as well as 
relatively wide intercellular spaces (about 10 ~ of cell 
volume) as reported by Spring and Hope (1978). We 
also noted average channel osmolality little different 
from bathing media osmolality. Qualitatively, the 
compartmental model gives results that are very simi- 
lar to the distributed parameter model, although 
there may be significant quantitative differences be- 
tween the predictions of the two models. This point is 
discussed in more detail elsewhere. 1 It was found, 
however, that with equiosmolar bathing media our 
model predicted a grossly hypertonic transported so- 
lution. The significance of this result was assessed by 
considering the numerical experiment in which mu- 
cosal bath salt concentration is varied while holding 
serosal concentration fixed. It was observed that as 
mucosal bath osmolality declined, the reabsorbate 
tonicity fell markedly. Indeed, within 1 ~ of bathing 
media isotonicity, transport was at equilibrium. 

The importance of small degrees of mucosal hy- 
potonicity as the driving force for transepithelial vol- 
ume flow has been stressed by Andreoli and Schafer 

1 Weinstein, Alan M., and Stephenson, John L. Coupled water 
transport in standing gradient models of the lateral intercellular 
space (Submitted for publication) 
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(1978) and Andreoli, Schafer and Troutman (1978), in 
considerations of proximal tubule. They have argued 
that this very water-permeable epithelium in its nor- 
mal functional state may be represented as a single 
membrane with parallel cellular and junctional ele- 
ments. In this case, the middle compartment is absent 
from the model. Nevertheless, the role for transep- 
ithelial osmotic gradients in the transport of water 
across other tissues remains uncertain. In particular 
the problem remains of rationalizing apparently iso- 
tonic transport in the case of relatively low epithelial 
water permeability. 

1. General Linear Theory of Epithelial Transport 

Regardless of their complexity, and regardless of the 
phenomenology of membrane transport, models of 
epithelial transport determine the flows of solute and 
water across the epithelium as a function of the con- 
centrations, pressures, and electrical potential of the 
bulk solutions bathing mucosal and serosal surfaces. 
If we restrict our attention to a single neutral solute 
we may write 

J~=Js(CM, Cs,PM, Ps; Co,Po) (1-1) 

and 

J~=J~(C M, Cs, PM,Ps; Co,Po) (1-2) 

where J~ is the net total transepithelial solute flux, J~ 
the net total volume flux, C O and Po are reference 
concentration and pressure, Co+ C M and PO+PM are 
mucosal concentration and pressure, and C o + C s and 
Po + Ps are serosal concentration and pressure. 

If mucosal and serosal concentrations and pres- 
sures are restricted to a sufficiently small neigh- 
borhood of C O and Po, we can expand Js and J~ in a 
Taylor series and retain only linear terms to give 

4=(4)0 + [ 8Js ] [ ] 
k0C~Jo Cm+ k ~ s J O  Cs 

+ / - - /  PM+ (1-3) 
laP M / o [~PssJ Ps 

and 
raJo I C [0J~]  

[~L]  raJD 
+ (1-4) 

+ LSpMjo 
Here (J,)o and (J~)o are solute and volume flows for 
CM=Cs=PM=Ps=O, i.e., with equal mucosal and 
serosal bathing solutions. For the present, we will 
consider only variations in the concentrations. Thus 

near the reference state, the concentration of the 
transported solution is 

c - J, (4to+ [ o4 ] [ e4  l LSCmJo Cm+ LSCsJo Cs 

" 4 (L)o+[gL-]  [aJ~] (14) 
[SCMj0 CM+ [SCslo Cs 

For the particular case in which the fluxes respond in 
a symmetric manner to alterations in the bathing 
media 

3Js gJ~ and 0J~ _ 0J~ 
0C~ ~C s ~C M 8C s 

so that the above expression for C R reduces to 

(Js)0 + t ~ J o  ( c ~ -  cs) 
cR - (1-6) 

l Jo 1 
(L)0 + tKCs ( c ~ -  c9  

The reader should note that this assumption of sym- 
metry is not carried through our subsequent analysis. 

From the general development above we may 
consider the representation of the experimental sit- 
uations that have been taken as indicative of "iso- 
tonic" transport. In one case a gallbladder with re- 
latively small mucosal volume at concentration Co is 
placed in a large serosal bath also at C o. The gall- 
bladder is observed to transport a substantial frac- 
tion of its mucosal content into the serosal bath with 
only minimal deviation of C M (Diamond, 1962; 
Whitlock & Wheeler, 1964). For this case we may 
assume that there is no change in the serosal con- 
centration and that the mucosal bath is at a transport 
equilibrium. Thus, for C~t the limiting mucosal de- 
viation 

(4)0+[ eJs ] [SCMJo C~ 
Co + c;~ = cR-  [ 8L ] ' (1-7) 

(d~)o + LO-~M] ~ C,~ 

so that to first order (i.e., dropping terms in (C~t) 2) 

C~t = (d~)~ C~ (dr)~ (1-8) 
[oso] [, Js 1 

- C~ k ~ J o  + LOCMJo- U~,)o 

In a second type of experiment, the gallbladder trans- 
ports the reference solution from a relatively large 
muscosal bath into a small serosal bath and the 
osmolality of the serosal medium is measured. This is 
accomplished by freely suspending the gallbladder 
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and collecting the transported solution as drainage 
from the serosal surface (Diamond, 1964b; Hill & 
Hill, 1978b). With this preparation, the observation is 
made that the osmolality of the serosal medium 
differs little from the reference. Setting C~, the 
steady-state serosal deviation from reference we may 
write 

[aLJ  1 (%)0 + LaCsJo Cy 
Co + C~ = C g = 

i-o<1 
(J~)o + t~-CssJO C~ 

so that to first order 

(1-9) 

(L)o- CoG)o C~ : ~ (1-1o) 
[ Js l 

+ Co b~CsJo- ~-CCslW~S]o +(J,)o 

When the fluxes respond in a symmetric manner to 
alterations in the bathing media C~ may be rewritten 

C~ = (J~)o - Co(L)o  (1-11) 

r~<l  [ ~ < l  +(<)o - Co 

It may be concluded from these considerations 
that the verification that an epithelial model predicts 
isotonic transport involves the calculation of both 
C* and C~ and the demonstration that both these 
deviations are only a small fraction of C 0. In prac- 
tice, with models of the "isotonically" transporting 
epithelia, C ~ -  C~ and a useful estimate of these 
values is obtained by solving the equation 

C O = C R = L~176 , (1-12) 
[~Y~] C* 

(Y,)o + LOCMJo 

sufl]cient to decide whether an epithelial model will 
predict isotonic transport in the experimental setting. 
Nevertheless, (CR) o is an important theoretical aspect 
of any epithelial model and provides a measure of the 
tightness of coupling of solute and solvent transport. 
It is, in fact, useful to define the coupling coefficient 
of osmotic transport (or coupling efficiency, as it is 
termed by Hill and Hill (1978a)) by 

(L)o Co 
~' =- (%)o/Co - ( G ) o "  (1-1s) 

Thus the coupling coefficient is the ratio of the actual 
volume flow to the virtual volume flow that would 
occur if reabsorption were "isotonic". Alternatively it 
is the ratio of the osmolality of the equal mucosal 
and serosal baths to the osmolality of the absorbate. 
The predicted deviations from isotonicity in the 
transport experiments may now be rewritten using 
this coupling coefficient as, for example, 

C*  - - (Js)~ (1 - y) (1-16) 
r a< r o< 1 ' 

- Co t y < j o  + Jo 

Hence, an epithelial model will predict isotonic trans- 
port when either coupling is tight ((CR)o~Co) or 

r 8J~, ] [ 8d~ ] is large relative to when - C  o 18-~..|o + 
k,~GuJo " -  z v / ~  

(d~) 0. This latter condition can be understood as a 
measure of epithelial permeability, as may be appre- 
ciated by examining transport across a simple mem- 
brane. 

Consider a membrane for which fluxes are de- 
scribed by the Kedem and Katchalsky phenome- 
nology 

J~= Lp [R Ta(  C s -  CM) + PM-- Ps] (1-17) 

and 

or  

C * =  (YJo - Co(J~)o (1-13) 
[ o < ]  " 

- C O [0CMJo  + [~CMMJ ~ 

This corresponds to the hypothetical experiment in 
which the mucosal osmolality is altered by an 
amount C* to obtain a transported solution that is 
exactly at the reference concentration. 

It must be stressed that the simple calculation of 

(%)0 (1-14) (C~)o-(<)o, 

the osmolality of the transported solution in the 
presence of exactly equal bathing media, may not be 

J~= N + J,,( I -,:r) C, + H,(  C u -  Cs); 

then 

(dr) o = O, (Js)O = N, 

r J,l : _  
VCMJo = -- L~CsJ0 LpRT~r, 

and 

(1-18) 

(1-19) 

[OJs 1 = = 
3CvJo - [~Css]0 - L ; R T r r ( 1 - a )  Co+Hs,(1-20)  

implying 

- N  
C; ,  = - C~ = C*  = (1-21) 

LvR To 2 C O + H s" 
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In the case of the single membrane, 7 =0, so that the 
observation of small equilibrium osmotic deviations 
must result from either large hydraulic conductivity 
or a membrane solute permeability sufficiently large 
to preclude the development of substantial solute 
gradients. 

The linearized form of the general transport equa- 
tions [Eqs. (1-3) and (1-4)] may also be used to 
estimate the model predictions of transport of vol- 
ume and solute against a potential gradient. The 
maximum concentration gradient against which the 
epithelium will transport solute is given by the so- 
lution of J, = 0, which under the linear approximation 
is 

/F 0J~ 1 
CM= -- (J~)o/[~-~M ] o. (1-22) 

Similarly, the maximum gradient against which it will 
transport water is given by the solution of J~=O or 

/r ~J~ 1 
CM= - ( J , ) o / [ ~ ]  0. (1-23) 

This we term the "strength of transport." Of course 
C v ,  the deviation from the reference, may be sub- 
stantial and the accuracy of this approximation can- 
not, in general, be guaranteed. 

2. A Compartment Model of the Lateral 
Intercellular Space 

In this section, we shall consider in detail the linear- 
ization (in concentration and pressure) of a single- 
solute compartment model of the lateral intercellular 
space. This linear approximate model will be used 
to verify the criteria of isotonic transport for the 
interspace model and to estimate the strength of 
transport. Further, it will also enable us to examine 
the influence of intraepithelial solute polarization 
effects on the measurement of tissue water permea- 
bility, that is to say, under what circumstances the 
effect of the channel basement membrane is signifi- 
cant. The numerical agreement with the nonlinear 
model equations is illustrated. 

Consider an intercellular compartment (the chan- 
nel) bordered by mucosal and serosal baths and by 
the cell (Fig. 1). All compartments contain a single 
salt solution; the osmolality and pressure in the 
serosal bath is denoted by C O + C s and Po + Ps, in the 
channel by C O + C~, and Po +Pc, and in both mu- 
cosal bath and cell by Co+ C v and P0+PM, where 
C O is some fixed reference concentration. The mu- 
cosal bath may contain an impermeant species at 
osmolality C i. The channel is bounded by apical (A), 
basal (B), and lateral (L) membranes. For each mem- 

brane there is an associated area A~, water per- 
meability Le~ , reflection coefficient aa and solute 
permeability h~, as well as transmural flux of volume, 
J~, and solute, ds~, (c~ = A, B, L). Across the lateral 
membrane there is solute transport into the channel 
at rate N. 

Denoting L~=A~Lp~ and H~=A~h~ we may write 
the standard Kedem-Katchalsky equations for vol- 
ume flux 

L A = L A [ ( P M - - P E ) - - R T C i + R T a A ( C E  - CM)] ,  (2-1) 

J~L=LL[(PM--P~) - -RTC~+RTaL(C  ~ -  CM)], (2-2) 

d ~  = LB [(Pe - Ps) + R Ta B ( C s - CE)], (2-3) 

and for solute flux 

LA =.IRA(1 --aA)(Co+ CA)+HA(CM-- rE) , (2-4) 
LL=N+L~(1-erO(Co+C~)+H~(C~-C~), (2-5) 

LB ='/~B( 1 - a n ) ( C o +  CB)+HB(CE - C~). (2-6) 

Here 

C~-  Cu 
Co+ 

CA--ln (Co + CE)-ln (Co + CM) 

and 

(2-7) 

C E - C S 
Co+ 

CB-ln (Co + C e ) - l n ( C o +  Cs) 
(2-8) 

are the mean osmolalities of the tight junction and 
basement membrane. The system of equations may 
be completed by specifying the two steady-state mass 
balance relations 

J ~  =J~A +J~L, (2-9) 

LB =LA+LL. 

These equations determine the intensive channel vari- 
ables, Pe and CE, as well as transepithelial volume 
flux, J~=J~,B, and solute flux, Js=Jsa, as functions of 
the independent variables Paf, CM, Ps, Cs, C~ and N. 

It may be observed that the only nonlinearity of 
the state variables in the model equations lies in the 
solvent drag term of the transmembrane solute fluxes. 
Furthermore, it is clear that if PM = Ps = CM = Cs = C~ 
= N = 0 ,  then C E = P E = J v = J = O  is a solution to the 
system. It is natural, therefore, in an attempt to 
simplify the model, to linearize the model equations 
about this solution and consider the approximate 
solute flux relations: 

J~A =J~a( 1 --erA) Co + H A( C M -  Ce), (2-10) 

J, t  = N + J~L(1 -- aL) C O + H L (C M - C~), (2-11) 

J~B = J~B( 1 -- erB) Co + HB(CE -- Cs). (2-12) 
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Co+Cs,Po + 

SEROSA 

@ Co+CM,Po PM 
C O +C E , Po+PE 

P 3A 

JL N 

Co+CM,Po + PM 

MUCOSA 

Fig. 1. Schematic representation of the 
lateral intercellular space. The cell and 
mucosal medium are assumed to be at the 
same osmolality and pressure 

It may be noted that this linearization is an adap- 
tation to a compartment model of the "isotonic 
convection approximation" introduced by Segel for 
the analysis of the continuous channel model (Segel, 
1970; Lin & Segal, 1974). 

The analytical solution of the linear model equa- 
tions may be fruitfully approached in two stages: In 
Case I, it is assumed that flux across the tight junc- 
tion is negligible and that there is no diffusion across 
the lateral cell membrane - this defines an elementary 
model much like that discussed by Diamond (1964b) 
but for the inclusion of a basement membrane with 
finite solute permeability. In Case II, it will be seen 
how the inclusion of a permeable tight junction may 
modify the behavior predicted by the elementary 
model. 

Case I" Sealed Tight Junction 

When there is insignificant junctional flux, the equa- 
tions of mass balance take the form 

J~ = LB(PE -- Ps) = LL [(PM -- PE) -- R T C i 

+RT(CE- CM)], (2-13) 
Y~ = LB(P~ - Ps) Co + HB( C~ -- Cs) = N,  (2-14) 

which may be solved for Pe and C~. Setting LLB 

LLLa 

LL + LB 

1 
C~ - H B + R T LLB C O [ N  + H s C s + LLB C O 

. ( p s - p M  + R T C  i + R T C M ) ] ,  (2-15) 

and the transepithelial fluxes are found to be 

LLBHB [pM_Ps  4 R T N  
J~ - H B + R TLL~ C O H B 

R T Ci + R T ( C  s -  CM) ] , (2-16) 

J~ =N.  (2-17) 

From these expressions certain global parameters of 
transport may be determined; namely: the hydraulic 
conductivity of the epithelium 

LLBHB " (2-18) 
Lp -- Ha + R TLLB C o ' 

the tonicity of the fluid transported between equal 
bathing media 

Ha C HB (2-19) /CR)0=RTL  -= 0+RTLL ; 

the osmotic coupling coefficient 

C O R T L L a C  o Lp 
7 = - 1 - -  (2-20) 

(CR) o H a + R T L L  B C O LLa' 

the osmotic deviations necessary to assess isotonicity 
of transport 

- N  
C :~ - L r , R  T(  C O - N/HB) '  (2-21) 

N 

C~ - LLBR T ( C  o + N/HB) '  (2-22) 

and 

N 
C* - ; (2-23) 

LLBRTCo 
and finally the maximum osmotic gradient against 
which volume can be transported 

= N (2-24) 
HB" 

(This maximum gradient, C, is precisely that specified 
in Eq. (1-23).) 

In the case of the continuous channel model, a 
considerable amount of attention has been given to 
the calculation of the tonicity of the fluid transported 
between equal bathing media (Diamond & Bossert, 
1967; Segel, 1970; Hill, 1975a; Sackin & Boulpaep, 
1975). As in the continuous case, the linear analysis 
of the elementary compartment model shows the 
reabsorbate tonicity, (CR)o, to be independent of the 
transport rate, N. For basement membrane electrical 
resistance either 10 ~cm 2 (Henim, Cremaschi, Schet- 
tino, Meyer, Donin & Cotelli, 1977) or l f~cm 2 
(suggested by the observation of Wright and Diamond 
(1968)) the tonicity of the fluid transported between 
equal bathing media, (CR)0, is tabulated for a range 
of lateral membrane water permeabilities in Table 1. 
In these calculations Co=0.2 mOsm/cm 3 and base- 
ment membrane water permeability, LB=0.5 x 
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Table 1. (CR) o (mOsm/liter) 

H B a 
(ohmcm 2) (cm/sec) 

L t (cm3/sec mmHg cm 2 epithelium) 

10 . 9  10 -8  10-7 10 .6 lO-S 

1 1.25 X 10 -a 66,003 6,792 871 279 220 
10 1.25 X 10 -4 6,780 859 267 208 202 

Table  2. C* (mOsm/liter) 

N 
(mOsm/sec cm 2) 

L L (cm3/secmmHgcm 2 epithelium) 

10-9 10 -8 10-7 10 -6 10-5 

0.5 x 10 -6 130 13 1.3 0.16 0.039 
4.0 x 10 .6 1100 110 11.0 1.30 0.32 

a For solute permeability H(cm/sec), the ion flow across a 
membrane is given by the relation 

I = H A C  

where I is the current carried by the species (amp), A is membrane 
area (cm2), zF= 10 s Coul/mol, RT=2.5  x 103 Joul/mol, C is mean 
ion concentration (mol/cm 3) and AO is transmembrane potential 
(volt). Thus, the membrane resistance, f2 (ohm cmZ), is given by 

(~=A~b.A 1 RT 1.25 • 10 -3 

I /4 ~(zF) 2 H 
for a mean ion concentration C~0.2 x 10 -3 mol/cm 3. 

10-5 cm3/sec mmHg. (LB reflects the permeability of 
the basement membrane material, 10 -4 cm/sec mmHg 
(Welling & Grantham, 1972), as well as an estimated 
5% of epithelial area occupied by the channel 
mouth.) 

It is clear that only for values of L L at least 
several times greater than have been reported for the 
very permeable rabbit proximal rubule (3.5x 
10 7 cma/secmmHg by Andreoli et al. (1978)) is 
C~ nearly isotonic to the bathing media. Thus, in 
agreement with Hill (1975a), the computed values of 
(CR) 0 are quite high. It must be emphasized, however, 
that the experimental determination of (C~) 0 would 
involve fixing each bathing medium at the reference 
osmolality and making independent measurements of 
both transepithelial salt and water fluxes. 

The model requirements for isotonic transport 
may be appreciated from an examination of the pa- 
rameter dependence of C*, the deviation of the mu- 
cosal bath concentration from the reference at which 
the reabsorbate tonicity equals the reference tonicity. 
It may be noted that in the compartment model 
when the reabsorbate tonicity is equal to the refer- 
ence tonicity (C R = Co) the channel itself is isotonic 
to the serosa (C~=0). Since in this case there is no 
solute diffusion across the basement membrane it is 
reasonable that C* is, in fact, independent of H B. On 
the other hand, C* is linearly dependent upon the 
tissue transport rate. For N = 0 . 5 x l 0 - 6 m O s m /  
sec cm 2, as in Necturus gallbladder (Spring & 
Hope, 1979a) or N=4.0 x 10 .6 mOsm/seccm 2 as in 
rabbit gallbladder (Diamond, 1964a) the predicted 
values of C* from the elementary compartment mod- 
el are indicated in Table 2 for a range of lateral 

membrane water permeabilities (L~=0.5 x 10 s cm3/ 
secmmHg. C0=0.2 ). The tabulated values of C* 
show that in Necturus, isotonicity of bathing so- 
lutions would be observed for L c > 2 •  10 -s and in 
the rabbit for LL>2 x 10 -7. These values of L L may 
be viewed in light of the unit membrane water per- 
meability, 1.2x 10 -s cm/secmmHg, determined in 
the red cell by Sha'afi, Rich, Sidel, Bossert and So- 
lomon (1967). L L is however the product of this unit 
permeability and the ratio of lateral cell membrane 
area to epithelial area. This membrane area ratio 
may be substantially greater than one, as, for exam- 
ple, in rabbit proximal nephron where Welling and 
Welling (1975) have found it to be 20 cm2/cm a epi- 
thelium in convoluted tubule and 10cm2/cm 2 epi- 
thelium in straight tubule. 

Hill (1977) has used numerical solution of the 
continuous channel model to investigate the serosal- 
mucosal osmolality difference in the case that the 
serosal medium is created by the gallbladder re- 
absorbate. (In the continuous model this corresponds 
to the boundary condition dC/dxlx=L=O.) His 
graphical display of results for N=0.6•  10 .6 
mOsm/seccm 2 (Fig. 4, Hill, 1977) appears to be com- 
patible with the values of Table 2, line 1. In discussing 
his results, however, Hill felt that in the simulation of 
the unilateral preparation with very hypotonic lu- 
minal contents, the model predicted an unaccept- 
ably high discrepancy between the bathing media. 
Similarly, in the elementary compartment model 

C* - N  
Co-RTLLB C~c) may get quite large for small C o. 

Nevertheless, in a hypotonic environment it is en- 
tirely plausible that L r may increase, reflecting 
perhaps, increased membrane hydration. Put con- 
versely, it seems unlikely that L c should be com- 
pletely independent of the reference state and the 
possibility of this dependence has been alluded to by 
Hill in subsequent discussions (Hill & Hill, 1978b). 
Indeed Diamond (1966) has presented evidence sug- 
gesting that cell membrane water permeability may 
vary inversely with the mean tonicity of the bathing 
solutions. 
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It is of interest to reconsider Diamond's early 
analysis of the elementary compartment model 
(1964b). Given equal bathing media at osmolality O0, 
the tonicity of the transported fluid, C, was found to 
be 

C=~9~ [1 + r  4N R rZ-L.oo ]. (2-25) 

However, in deriving this expression the assumption 
was made that there was no diffusive loss of solute 
from the channel across the basement membrane. As 
has been shown above, this implicitly introduces into 
the calculation the assumption that (1) the channel 
and serosa are at equal osmolality, Co, and (2) the 
mucosal osmolality is in fact somewhat less than the 
serosa and is given by Co + C*. Repeating Diamond's 
analysis with the explicit incorporation of the under- 
lying assumptions yields the relation 

/ 

R TLLn(C o + 

- N  
which has the exact solution C*= Hence, 

R TLLn C O" 
when O o in the Diamond formula is taken as the 
tonicity of the mucosal contents of the gallbladder, 
the computed concentration, C, is indeed the osmo- 
lality of the serosal drainage in the unilateral prep- 
aration (an observation also made by Hill, 1977). 

Thus, for the compartment model of the inter- 
space transporting at quasi-steady state there appears 
to be little role for solute trapping within the in- 
terspace to enhance the transepithelial flow of water. 
The model behaves as though it were a simple mem- 
brane with hydraulic conductivity, LLB and the driv- 
ing force for solvent flow just luminal hypotonicity. 
Andreoli and co-workers have emphasized the point 
that for the highly water permeable proximal con- 
voluted tubule (Andreoli et al., 1978) and pars recta 
(Andreoli & Schafer, 1978) small values of C* (exper- 
ilnentally indistinguishable from zero) suffice to ac- 
count for observed water flows. 

In contrast, however, the large water flows across 
the vigorously transporting rabbit gallbladder have 
been more difficult to understand in light of the lower 
water permeability of this tissue. Although standing 
gradient theory offered a potential resolution to this 
difficulty, calculations using the channel dimensions 
of actively transporting epithelia have not shown 
significant gradients (Hill, 1975a). It remained, there- 
fore, to reexamine the accuracy of what was thought 
to be the water permeability relevant to the model. 
Diamond's discussion (1978) of the data of Wright, 
Smulders and Tormey (1972) stressed the fact that the 

Table 3. L e x 108 cm3/secmmHg cm 2 epithelium 

(ohmcm z) (cm/sec) 
L L (cm3/sec mmHg cm 2 epithelium) 

1 0 - 9  10 -8  10 _7 10 - 6  1 0 - 5  

1 1.25 x 10 _3 0.1 0.96 7.6 24. 30. 

10 1.25 x 10 -~  0.097 0.77 2.5 3.2 3.3 

100 1.25 x 10 - s  0.077 0.25 0.32 0.33 0.33 

30-rain determination of water permeability (3 x 10-9 
cm/secmmHg) was substantially less than that calcu- 
lated from the flows during the first five minutes of 
the experiment (3 x 10 8 cm/sec mmHg). The cause of 
the slow decline in water flow during the Lp de- 
termination was not apparent; intraepithelial solute 
polarization should theoretically be complete within 
seconds (Diamond, 1978; Weinstein & Stephenson, 
unpublished). Diamond speculated that the effects of 
solute polarization within the channel might well 
mask another order of magnitude increment in the 
cell membrane water permeability. In fact, the effects 
of such polarization on the steady state water per- 
meability determination are predicted by the elemen- 
tary compartment model and are realized as the 
effect of H B on the calculated L~. 

Table3 shows the dependence of tissue Lp on 
both the basement membrane solute permeability 
and the cell membrane water permeability (Co= 
0.2 mOsm/cm 3, LB=0.5x 10 -5 cm3/sec mmHg). It 
should be observed that for increasing cell membrane 
water permeability solute entrapment plays a greater 
role in determining the epithelial hydraulic conduc- 
tivity; at lower lateral membrane water permeabil- 
ities this role is manifest for the lower basement 
membrane solute permeabilities. In particular, for a 
basement membrane resistance for rabbit gallbladder 
10 f2cm 2 the 5-min Lp of Wright et al. (1972) is the 
maximum L e observable for a steady-state experi- 
ment. L L could be any value greater than 10-7 cma/ 
sec mmHg and C* might well be quite small. In 
this regard, it is of interest to note that if proximal 
tubule basement membrane resistance is I f2cm 2, then 
the maximum observable steady-state Lp is 3 • 10 -7 
cm/sec mmHg, approximately the value reported by 
Andreoli et al. (1978). Indeed, Thomas and Miku- 
lecky (1978) in their computer simulation of rat proxi- 
mal tubule, have suggested the presence of substan- 
tial intraepithelial solute polarization effects. Finally, 
Hill and Hill (1978b) reported a hydraulic conduc- 
tivity for ouabain-treated Necturus gallbladder of 
9 x 10- 9 cm/sec mmHg using direct application of hy- 
drostatic pressure in a unilateral sac preparation. It is 
known, however, that ouabain treatment will increase 
the electrical resistance of proximal tubule (Lutz, 
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Cardinal & Burg, 1973) and the observations of 
Spring and Hope (1979b) on Necturus gallbladder 
suggest that this increase in electrical resistance oc- 
curs in association with a swelling of the cell and loss 
of cross-sectional area of the lateral interspace. It 
may be seen from the elementary compartment mod- 
el that a decrease in interspace basement membrane 
area sufficient to increase basement membrane re- 
sistance to 30 flcm 2 will limit the gallbladder Lp to 
9 • 10 . 9  cm/sec mmHg. 

Case II: Permeable Tight Junction 

The case of a permeable tight junction is approached 
by first considering the junction and lateral cell mem- 
brane as two parallel elements comprising the mu- 
cosal boundary of the channel. Setting 

L M = L L 4- LA, (2-27) 

LLaL 4- LACrA (2-28) 
a M - L L + L  A ' 

LALL " (2-29) 
H M = H A  + H z  +(~rz--aA)2 R T  Co LA + L L, 

the transmucosal fluxes are found to be 

JvM=- JvA 4- JvL 

= L M [ P M - P E - R T C i + R T a M ( C  E -  CM)], (2-30) 

=JvM(1--6M) C o + H M ( C  M - CE)+N.  (2-31) 

We may next analyze this composite mucosal mem- 
brane in series with the basement membrane. Denot- 
ing 

LMLB 
LM8 -- L u + L~' (2-32) 

LMB(H M + H~) 
Lp - HM + HB + R TLMB(a ~ -  aS) 2 C o ' (2-33) 

H B o- M + H M 6"e 
a = , (2-34) 

H B + H M 

H =  HMHB (2-35) 
H~r+ H B ' 

the transepithelial fluxes may be written in terms of 
the transepithelial driving forces 

Jv= L p E P M - P s - R T  Ci + R T a d  + R T a ( C s -  CM)], 

(2-36) 

C + HBN 
4 = J ~ ( 1 - a )  Co+H(CM - s) H~-~H B, (2-37) 

where 

d - -  (aM-- aB) N (2-38) 
HB a M + H M a n  

Table 4. Parameters for two hypothetical epithelia 

" R a b b i t  "Necturus 
gallbladder" gallbladder" 

Elementary parameters 

N a 4.0 • 10 -6  0.5 • 10 -6  

LB b 5.0 x 10 - 6  5.0 x 10 -6  

HB c 1.25 • 10 - 4  2.5 x 10 - 4  

a s 0.0 0.0 

L L 5.0 • 10 -7  0.5 X 10 7 

H L 6.25 x 1 0 - 6  0.0 

a L 1.0 1.0 

L A 5.0 x 1 0 - '  0.5 x 10 -7  
H A 6.25 x 10 -6  6.25 X 10 -6  

(7 A 0.9 0.7 

Composite Parameters 

L M 1.0 • l 0  -6  1.0 x 10 -7  

H ~  2.2 x 10 -5  1.5 x 10 -5  

a N 0.95 0.85 
LMB 8.3 X 10 " 9.8 X 10 S 

Lp 4.1 x l 0  - s  4.9 x 10 -8  

H 1.9 x l 0  - s  1.4 x l 0  - s  

a 0.81 0.80 

Derived quantities 

(~ d 32.0 2.0 
(J~)o e 1.99 • 10 - s  1.47 • 10 -6  

Us)o f 4 . 1 6 x 1 0  6 5 . 3 0 x 1 0  -7  

(CR) o 209.0 362.0 

0.96 0.55 

[<] dCu3 ~ - 6 . 2 1  • 10 - 4  - 7 , 3 3  x 10 - 4  

dJs ] - - 4 . 6 0 x 1 0  - 6  - - 1 , 5 3 x 1 0  s 
dCMJo 

c~, - 1.82 - 1.83 
C* - ! . . 5 2  - 1 . 8 1  

C~ 1 3 0  1.79 

a mmol/sec cm 2 epithelium. 
b Water permeabilities (cm3/sec mmHg cm 2 epithelium). 
c Solute permeabilities (cm3/sec cm 2 epithelium). 
a C o n c e n t r a t i o n s  (retool/l i ter).  

~ V o l u m e  flux (ml/sec cm 2 epithelium). 
f Solu te  flux (mmol/sec cm 2 epithelium). 

has the dimension of concentration and is the effec- 
tive force for volume flow due to active salt transport. 
Again for equal bathing media 

(Jv)o = R T L  e a d = R TLp (aM-  aB) N (2-39) 
H M + H  B ' 

( J ~ ) o = ( 1 - a )  Co(J,)o + H B N  ( 2 - 4 0 )  
H m + H~' 

HB 
(CR) o = (1 -- a) C o 4 R TLp(a M - %)'  (2-41) 

HB 
= ( 1 - - a R )  Co4 R T L M B ( a M _ a B ) ,  
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and the derivatives at the reference state, 

[0Jo l [0Jo 1 
- L~CsJ o = L~MJ0  = - R T L p a ,  (2-42) 

- [ ~ J ~ l  = [ ~ 1  =RTLpCo(cr2-cr) +H" (2-43) 
L~sJO L'~'.-'M J o 

Thus, the mucosal osmotic deviation for steady-state 
transport may be written 

H B N  
R T L p  cr2Co~ H M + H  B 

C * -  
M R T L s 2 C o + H _ R T L p a ~ "  

(2-44) 

The introduction of a permeable tight junction 
permits the appearance of complex phenomena pe- 
culiar to composite membranes. Thus, even for 
~A = 1, if, for example, the mucosal salt permeability is 
one-fourth that of the basement membrane, then a 
whole epithelial reflection coefficient of 0.8 will be 
measured. If a A<I  and both L A and L L are sub- 
stantial then convective flow through the junction 
(and back across the lateral cell membrane) may give 
the impression of enhanced mucosal solute permea- 
bility. The latter phenomenon, namely H M > H A + HL, 

allows, at least theoretically, for the calculation of the 
relative magnitude of junctional and lateral cell mem- 
brane water permeability. A prerequisite for this de- 
termination is that the whole epithelial parameters, 
Lp, H and a, the basement membrane parameters, 
L~, H B and a~, as well as aL, H L and HA, be known. 
Then, using the defining relations for the composite 
permeabilities one may show 

LA = ( a t -  O'M) 2 R T L M C O 

LL H ~ t -  HA-- HL ' 

where the right-hand side is determined from 

(2-45) 

H H B  
HM -- H B - g '  (2-46) 

H B a - H a  B 
cr M -  H B _ H  , (2-47) 

LM __ L B Lp (H~ - H) (2-48) 
(L 8 - Lp) (H~ - H) - R T(a  - aB) 2 L B Lp C O ' 

We shall gain a sense of the accuracy or range of 
utility of the isotonic convection approximation by 
comparing the numerical predictions of the linearized 
and nonlinear models for two hypothetical epithelia 
in several steady-state experiments. Table 4 lists the 
individual and composite parameters for these epi- 
thelia, one with transport activity akin to rabbit 
gallbladder, the other to Necturus gallbladder. 

It may be noted that the rabbit epithelium trans- 
ports solute at eight times the rate of Necturus, so 
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Fig. 2. Comparison of the channel model and its linearization. For 
both the rabbit and Necturus parameter sets volume flow (J~) and 
reabsorbate concentration (Ce=Js/Jv) are graphed as mucosal salt 
concentration is varied. (Serosal salt concentration is fixed at 
0.2Osm/liter.) Solution to the nonlinear equations is plotted as 
solid curves, to the linear model as dashed curves. With the 
Necturus parameters, the two models result in virtually identical 
predictions 

that with half the basement membrane solute per- 
meability, the strength of this rabbit channel pump, 
C, is 32 mOsm/liter (compared with 2 mOsm/liter for 
Necturus). Nevertheless, the water permeabilities 
have been so chosen that for either epithelium in a 
unilateral sac preparation the tonicity of the reab- 
sorbed fluid will be 0.2 mOsm/cm 3 when the mucosal 
contents are within 1% of this value. It is of interest 
to observe that although the composite mucosal bar- 
rier for the rabbit is an order of magnitude more 
water permeable than in Necturus, the two models 
have comparable whole epithelial hydraulic conduc- 
tivities, due to solute polarization effects. 

Fig. 2 shows the simulation of steady-state experi- 
ments in which the epithelium is placed between 
media of fixed concentration. In each case, both 
baths are of equal pressure, there are no impermeant 
species present and the serosal bath is at 0.2 mOsm/ 
cm 3. The effect on transport of varying mucosal 
bath salt concentration about 0.2 mOsm/cm 3 is dis- 
played by plotting both J~ and JjJ~, as a function of 
mucosal tonicity. (Variation in J is, in fact, relatively 
minor in these experiments.) For both the rabbit and 
Necturus parameters the predictions of the nonlinear 
models are indicated by solid curves and serve as a 
check on the predictions of the linear approximate 
models (dashed curves). It is clear that for the more 
sluggishly transporting Necturus, the accuracy of the 
approximation is a bit better. Nevertheless, it may be 
said for either epithelium that near C u = 0 the varia- 
tion in J~ is accurately predicted. Thus, the epithelial 
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Lp estimated by the linear model should be close to 
that derived from the nonlinear model by computing 
numerically the derivative Lp=OJv/OC ~. It is of in- 
terest to note that in the weakly transporting Nec-  
turus, near C M=0, small variations in C M may pro- 
duce large changes in the tonicity of the reabsorbate. 
Thus, although the Necturus  model predicts iso- 
tonicity for any unilateral preparation, the model also 
predicts that separate solute and solvent flux 
measurements between large equal bathing media 
may show a ratio much greater than isotonicity. 

A discrepancy with the experimental literature 
may be perceived in the inability of the rabbit model 
to transport volume against an adverse salt gradient 
of more than 32 mOsm/liter. The observations of 
Whitlock and Wheeler (1964) and Diamond (1964a) 
demonstrate that the rabbit gallbladder can, in fact, 
transport water against 40 mOsm/liter at a sub- 
stantial fraction of the level flow rate. Within the 
framework of a Curran-MacIntosh type of epithelial 
model, weakness in transporting water against an 
osmotic gradient suggests inadequate hyperosmo- 
lality of the middle compartment. In terms of the 
linear approximate model, it means that the term 

~ C =  a ~ N  _ is too small, which, in turn, implies that /G+HB 
H B is too large. Yet in the model of the isotonically 
transporting rabbit gallbladder there is no experi- 
mental justification for choosing a basement mem- 
brane permeability smaller than 1.25 x 10 .4 cm/sec. 

We are led therefore to the supposition that in the 
placement of a hypertonic solution within the mu- 
cosat bath, the modeI parameters have changed from 
the level flow state. Indeed, Reuss and Finn (1977) 
have shown that in Necturus  gallbladder, imposition 
of mucosal sucrose produces substantial increase in 
the electrical resistance of the lateral intercellular 
space. In the rabbit gallbladder, Smulders, Tormey 
and Wright (1972) have documented a 70 ~ decline in 
lateral interspace area with the addition of 50 mOsm/ 
liter sucrose to the mucosal bath. Thus, it appears 
that with the imposition of the osnaotic gradient there 
is indeed a decrease in HB that occurs in association 
with an appreciable loss of interspace area. 

It seems reasonable to suppose that in these ex- 
periments, changes in channel dimensions are me- 
diated by changes in channel pressure. For Nec~urus 
gaIIbladder between equal bathing media, Spring and 
Hope (1979a) have shown channel volume to be a 
sensitive function of changes in serosal pressure. To 
illustrate the possible role of channel pressure in 
modulating epithelial water transport we shall con- 
sider a simple compliance relation of the form 

A BB= 
AO 1 +#(Pc-P,~ (2-49) 

where A B is channel basement membrane area, PE is 
channel pressure, and # is a compliance constant. (A ~ 
and pO are area and pressure at level flow.) An 
alternative empirical compliance relation has been 
utilized by Huss and Marsh (1975) and Huss and 
Stephenson (1979) in their models of proximal tubule 
in which channel area is related to channel pressure 
through an exponential function. Nevertheless, over a 
wide range of serosal pressures the linear compliance 
law has been shown to give an adequate simulation 
of the changes in channel dimensions (Weinstein & 
Stephenson, 1979). 

These compliance relations have been incorpo- 
rated into the nonlinear channel model with the 
proportions 

L B H~ A B 
0 -  o -  " (2-50) 

/2 B H~ AB ~ 
(The rigid model is restored by setting /~=0.) Using 
the parameters for rabbit gallbladder and /~= 
0.2/mmHg 2, we have computed the transepithelial 
fluxes for both rigid and compliant models over a 
range of hypertonic mucosal bath concentrations. In 
Fig. 3, transepithelial volume flow (nl/sec cm 2) is plot- 
ted against mucosal salt concentration ranging from 
200 to 280 mOsm/liter (with serosa at 200 mOsm/ 
liter). Over this range the volume flow predicted by 
the rigid model is a linear function of concentration, 
with volume flow reversal occurring at a 32 mOsm/ 
liter salt gradient. By contrast, the compliant model 
is still transporting at 25~  of its level-flow rate 
against a salt gradient of 40 mOsm/liter and flow 
remains positive through 80 mOsm/liter. The insert is 
a graph of channel cross-section area (relative to the 
level flow area) as predicted by the compliant model 
for these same experiments. At the 80 mOsm/liter 
gradient, channel basement membrane area (and 
hence permeability) has decreased to approximately 
one-third its value at level flow. 

Thus, the effect of incorporating a compliant lat- 
eral intercellular space into the channel model ap- 
pears to be an enhanced capability of simulating 
water transport against an osmotic gradient while 
maintaining the desired level flow model characteris- 
tics. This last calculation is an example of a series of 
experiments for which the epithelial representation as 
a single membrane or as a rigid composite membrane 
is not adequate. Nevertheless, the compartment con- 
cept remains intact and steady-state experiments 
could still be simulated with a rigid interspace model 
although the appropriate parameter set might vary 
with the experimental conditions. 

2 In Necturus gallbladder, the data of Spring and Hope (1979a) 

1 a_Vch =0.2/mmHg, where l~Ch is channel indicate a value Vc- ~ ~Ps vs=0 

volume and P~ is serosal pressure. 
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Hg. 3, Volume transport against an adverse osmotic gradient: 
Comparison of rigid arid compliant models. Using the nonlinear 
channel model with the rabbit parameter set, transepithelial vol- 
ume flow is determined as a function of mucosal salt concen- 
tration. (Serosa is fixed at 0.20sm/liter.) With a model of fixed 
geometry, volume flow remains a linear function of salt gradient 
and flow reversal occurs at 32mOsm/liter. When the channel is 
permitted to collapse as channel pressure falls, the strength of 
transport is increased. Channel cross-section (relative to the tevel 
flow state) is shown in the insert 

3. Appl icat ion  to a Comprehens ive  Epithel ia l  M o d e l  

In this section we illustrate the use of the general 
analytical principles of Sect. I, as well as the insight 
gained from the compartmental analysis, to under- 
stand the behavior of a comprehensive epithelial sim- 
ulation. The model used for these calculations has 
previously been reported in detail (Weinstein & Ste- 
phenson, 1979) when it was used for the simulation of 
Necturus gallbladder epithelium. Here we shall also 
make use of another parameter set representing a 
more actively transporting epithelium, perhaps akin 
to rabbit gallbladder. 

Briefly, the model consists of a cell and para- 
cellular channel between well-stirred mucosal and 
serosal bathing media (Fig. 4). Variables of the model 
include electrical potential, hydrostatic pressure, and 
the concentrations of sodium, potassium, and chlo- 
ride ions, as well as volume flow and the fluxes of the 
several solutes. In addition, the cell contains a ne- 
gatively charged impermeant species. The cell ac- 
tively extrudes sodium into the lateral intercellular 
space at a rate proportional to the intracellular so- 
dium concentration, and potassium is taken up at the 
lateral membrane at a rate proportional to the so- 
dium transport. There is coupled Na-C1 entry into 
the cell across the apical membrane. 

Within both cell and channel, all variables are 
functions of position x, where x = 0  just interior to 

Mucosal Bath 
(M) 

Cell (I) 

Channel (E) 

Serosal Bath 

X=O X=L 
Fig. 4. Representation of cell and channel between mncosaI and 
serosal bathing media. Except for tapering near the junction and 
basement membrane, the channel is assumed to be of uniform area 

the apical membrane or tight junction and x = L  at 
the basal or basement membranes. Mass conser- 
vation is represented by the steady-state equations 

dF~ 
dx (x)=J~(x), (3-1) 

dFk~ (i, x)=Jk~,(i, x), (3-2) 
dx 

where F~ and Fk~ refer to axial volume and solute 
flows in compartment c~ (c~ = I or E, indicating cell or 
channel), i references the solute species, and J in- 
dicates flux across the lateral cell membrane into 
compartment ~. The transmural fluxes J are given by 
the Kedem-Katchalsky relations for membranes so 
that, for example, flux into the channel is of the form 

J~E(X) = S ,  Lp rE. { P~ (x) - PE(X) -- R T H (3-3) 

+ R T ~  atE(i ) [CE(i, x)- Cx(i, x ) ] } ,  
i 

dke(i, x)=J~,E(x) [1 -- o-x~(i)] CIE(i, x)+ NSP(i) (3-4) 

+ S .  h~(i) .  {[C,(i, x ) -  C~(i, x)] 

, z(Or 
"~- ~F I E( i , X ) ~  [ I / / / ( X ) -  I / ] E ( X ) ] ] }  , 

with 

Cl(i  , x ) -  CE(i , x)  
C~E(i, x) - log ( Ci( i  , x))  - log ( C ~(i, x))  ' 

(3-5) 

where P~(x), ~b~(x), and Ca(i, x) are pressure, voltage 
and concentration in compartment e, H is cell imper- 
meant anion concentration, S is circumferential 
length of the cell-channel boundary, Lpi ~, ~rlE(i ), and 
h~E(i ) are water permeability, reflection coefficient, 
and solute permeability, NSP is an active transport 
term, z(i) is solute valence, and R, T, F are gas 
constant, temperature, and the Faraday. 

Further, it is assumed that within cell and channel 
the variables satisfy the Poiseuille equation 
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dP~ 8~r/ . . . .  
dx (x)= A2~) G, tx) (3-6) 

and the Nernst-Planck equation 

Fk=(i, x)= F~(x)C~(i, x ) -  D~(i)A~(x)rid@ (i, x), (3-7) 

dG - u~(i)&(x) G(i,  x) g2x (x) 

where A s is cross-sectional area, G is viscosity and D~ 
and G are the appropriate mobilities. Electroneu- 
trality demands 

0 =Zz(,) cE(i, x), 0-8) 
O=zfll + ~ z(i) Ci(i, x), 

where G is the mean valence of the impermeant 
anions. 

The boundary conditions for this system of equa- 
tions are specified implicitly by the transport laws at 
each of the bounding membranes. Thus, for example, 
at the channel basement membrane we require 

F~E(L) = A~sLvEs {PE(L) ' P s  

+ R T ~  (rEs(i)[Cs(i)- CE(i , L)]}, (3-9) 
i 

and 

F~E(i , L) = b;z(C ) [1 - aEs(i)] des(i) 

+ AEshEs t [ CE(i, L ) -  Cs(i)] 

g- 

% 

z (i) F t + 8Es(i) -R~- [tPE(L)-- tps] ' (3-10) 
. 7  

where AEs is the basement membrane area open to 
the channel. In all the simulations that follow we 
shall assume that there is no net transepithelial cur- 
rent flow, i.e., an open-circuited preparation. To 
achieve this we let serosal voltage, ~'s, be a dependent 
variable and require 

0 = ~ z (i) [FkE(i, L)+ Fk, (i, C)]. (3-11) 
i 

Finally, the compliant features of the epithelium 
are incorporated into the relations 

&(x)  = (&(x)) 0 [1 + ~ (iP~ (L)-P, (L) 

- ( ( P E ( L ) )  o - ( P , ( L ) )  o))1, (3-12) 
L = (L) o [1 +/~L(~ (0) -- (P, (0))o)1, (3-13) 

where both channel cross-section and epithelial 
height vary linearly as a function of an appropriate 
hydrostatic pressure. The values subscripted ()o in- 

dicate the reference at level flow. In the interest of 
enhanced numerical accuracy, we have specified uni- 
form channel area for 0 < x < L .  

As in previous work (Weinstein & Stephenson, 
1979), the model equations were cast as a spatially 
centered finite difference scheme and all variables 
determined simultaneously using Newton's method. 
This method has been carefully tested, particularly on 
large kidney models (Mejia, Stephenson & LeVeque, 
1980). It has been found to be efficient and accurate, 
giving the same results as other tested boundary val- 
ue problem solvers. It has also been compared on epi- 
thelial models with quasilinearization computational 
schemes (Huss & Stephenson, 1979). The parameter 
choices used for the Necturus and rabbit gallbladder 
simulations are indicated in the appendix in Tables 
A1-A and A2-A. Displayed in Tables A1-B and A2-B 
are the solutions of the model equations with each 
parameter set for the case of equal bathing media. 

in addition to the reference parameters, several 
modified sets have been utilized in our experimental 
simulations with the aim of illustrating the effect of 
basement membrane solute permeability and mu- 
cosal membrane water permeability on epithelial 
function. For the Necturus experiments, all calcu- 
lations have been carried out for each of the three 
channel basement membrane solute permeabilities, 
(HEs(i)) , multiplied by 5.0, 1.0, 0.2, and 0.04. Variation 
in mucosal water permeability has been performed in 
the rabbit simulations by multiplying the cell apical 
membrane, cell lateral membrane, and tight junction 
water permeabilities (LpMt, Lpi > gpME) by 1.0, 0.1, 
0.04, 0.02, and 0.01. The level-flow transepithelial 
fluxes and coupling coefficients for all nine parameter 
sets are indicated in Table 5. It is clear from the 
Table that with decreasing basement membrane so- 
lute permeability or increasing mucosal water per- 
meability there is enhanced solute-solvent coupling. 
Furthermore, as was indicated for the compartmental 
channel model, the level flow reabsorbate tonicity, 
(CR) o, is not sufficient to decide the issue of isotonic 
transport. 

By solving the model equations after imposing 
small increments of NaC1 concentration in either 
mucosal or serosal boundary data (A C=0.2  mOsm/ 
liter in Necturus experiments; 2.0 mOsm/liter in rab- 
bit experiments) we may compute numerically the 
derivatives of the transepithelial fluxes with respect to 
these data. Then, following the analysis of Section 1, 
we may use these derivatives to estimate the de- 
viations from isotonic transport. By imposing a small 
increment of an impermeant species within the mu- 
cosal bath one obtains an estimate of the whole 
epithelial hydraulic conductivity, namely RTLp= 
-OJv/c~C i. Finally, using (Jv)o and c3Jjc3C~j, one may 
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Table 5. Level-f low proper t ies  predic ted by the comprehens ive  

epithelial  mode l  

Table 6. Flux var ia t ion  p roduced  by small  changes  in the ba th ing  

med ia  

(Jo)o" (%)0 b (C,)0 
(nliter/  ( n O s m /  (mOsm/ l i t e r )  

sec c m  ~) sec cm ~ ) 
RTLp" OCM @Cs OC~ OC s 

x 10 r x 104 • i04 • 106 x 10 s 

N e c t u r u s  

H B x 5.0 0,56 0.36 646 0.31 

Reference 0.98 0,37 378 0.53 

H 8 • 0.2 1.45 0.40 275 0.73 

H B x 0.04 1.75 0.43 246 0.8l 

Rabbit 

Reference 17.47 4.09 234 0.85 

L,a x 0.1 13.6l 4.10 301 0.66 

L M x 0.04 10.36 4.08 394 0.51 

L M • 0.02 7.66 4.06 530 0.38 

L g  x 0.01 5.19 4.04 778 0.26 

Necturus 

H 8 x 5.0 9.98 - 8.95 9.25 - 6.74 8.90 

Reference 7.52 - 6.61 6.70 - 4.66 6.42 

H B • 0.2 5.07 - 4.28 4,29 - 2,12 3.92 

HB x 0.04 4.05 --3.31 3.31 --0.96 3.06 

Rabbit 

Reference 8.68 - 6 . 9 5  7.17 22.18 - 2 . 4 2  

L M • 0.1 5.58 - 4 . 4 7  4.63 21.97 - 2 . 0 2  

L u x 0.04 3.76 - 2.97 3.09 22.90 - 2.96 

L u x 0.02 2.53 - 1.97 2.07 23.67 - 3.72 

L M x 0.01 1.60 - 1.23 1.31 24.31 - 4 . 3 1  

J~ = F~(L) + F~(L). 
3 

b j= ~ Fke(i,L)+Fk~(i,L). 
i -1  

" (ml/sec cm2)/(mOsm/cm3). 
b (mOsm/sec  cm2)/ (mOsm/cm3) .  

estimate the strength of transport, C. For the param- 
eter sets of interest, the numerical derivatives are 
displayed in Table 6, and the predicted concen- 
trations C~, C*, C*, and C in Table7. It is worth 
noting in Table 6 that as predicted by the compart- 
ment model (Table 3) the Lp of rabbit gallbladder is 
more sharply dependent upon mucosal water per- 
meability for the smaller values of mucosal water 
permeability. Put conversely, as mucosal water per- 
meability increases, interspace solute polarization ef- 
fects play a greater role in determining epithelial Lp. 
It may also be observed that for both models OJjOC~ 
=~-OJjOCs, reflecting the asymmetry of the cell 
sodium transport law. 

Examination of Table 7 reveals that all the Nec- 
turus parameter sets as well as the reference rabbit 
parameters are compatible with an isotonically trans- 
porting model. The Necturus experiments demon- 
strate that the osmotic deviations are remarkably 
insensitive to variations in basement membrane so- 
lute permeability - a fact suggested from the analyti- 
cal study of the compartment model. The osmotic 
deviations are, however, quite dependent upon the 
mucosal water permeability. 

It remains, therefore, to assess the accuracy of the 
estimates of the linear analysis by computing the 
osmotic deviations and strength of transport numeri- 
cally. Thus, for example, C~ is determined by first 
solving the model equations for a range of mucosal 
bath salt concentrations to obtain a curve CR(CM). 
The intersection of C~(CM) with the line CR = CM is 
jUSt the point at which C M = C~ (calculated by linear 
interpolation from CR(CM) ). Similar procedures yield 

Table 7. Concen t ra t ions  es t imated  from the l inear analysis 

(mOsm/l i te r )  

c;, c* c~ d 

Necturus 

H B x 5.0 - 1,44 - 1.44 1.40 0.62 

Reference - 1.38 - 1.37 !.35 1.48 

H B x 0.2 - 1.3I - 1.29 1.29 3.38 

H B x 0.04 - 1.27 - 1.23 1.24 5.30 

Rabbit 

Reference - 4.14 - 3.69 3.64 25.14 

L M x 0.1 - 14.10 - 12.38 12.74 30.47 

L M x 0.04 - 27.93 - 24.41 26.69 34.94 

L u x 0.02 - 45.64 - 40.10 47.87 38.88 

L M x 0.01 - 68.60 - 61.32 84.2l 42.13 

C* and C~; C is the x-intercept of J~(CM) as C M is 
made increasingly hypertonic. Table 8 lists the results 
of these calculations, which are presented graphically 
in Figs. 5-7. 

Figure 5 shows a set of experiments on the Necturus 
model. In the left panel, CR(CM) is plotted as a solid 
curve as the mucosal bath osmolality varies from 194 
to 200mOsm/liter. (Serosal tonicity is fixed at 
200mOsm/liter); the four curves represent the four 
parameter sets. In the right panel, mucosal osmolality 
is fixed at 200 mOsm/liter and reabsorbate tonicity is 
plotted as a function of serosal concentration. The 
dashed line in the left panel is just C R = C O + CM; on 
the right C R = C O + C s. The approximately common 
point of intersection of the four curves with the line 
of identity is a striking display of the relative inde- 
pendence of C~t and C~ from basement membrane 
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Table 8. Numerical  determination of transport equilibrium con- 
centrations 

c* c* c~ e 

Neclurus 

H B x 5.0 - 1.33 - 1.31 1.31 
Reference - 1.33 - 1.31 1.31 
H B x 0.2 - 1.31 - 1.28 1.28 
H 8 x 0.04 - 1.27 - 1.23 1.23 

Rabbit 

Reference - 3.94 - 3.51 3.55 
L~t x 0.1 -13 .23  -11 .25  11.54 
L u x0.04 -27 .16  -21 .87  22.82 
L~  x 0.02 - 48.20 - 36.26 38.97 
L M x 0.01 - 81.37 - 56.93 65.08 

50.02 
51.15 
50.82 
50.05 
48.56 
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Fig. 5. Effect of bath osmolality on transport  tonicity (Necturus 
parameters): In the left panel, reabsorbate concentration is plotted 
as a function of mucosal  osmolality for four values of basement  
membrane  solute permeability ((1) reference permeability x 5; (2) 
reference; (3) reference x 0.2, (4) reference x 0.04). The dashed line is 
the line C g =  C o + CM. The intersection of a solid curve with the 
vertical line at C O is the value C a =(CR)0; the intersection with the 
dashed line is CR= C O + C*.  In the right panel, reabsorbate con- 
centration is displayed as a function of serosal osmolality. The 
dashed line is C e= C O + Cs, and the point of intersection with a 
solid curve is C a = C o + C~ 

solute permeability. With reference to Tables 7 and 8, 
one finds that for the reference parameter set, the 
predicted osmotic deviations are accurate to within 
5%. 

Figure 6 displays the results of a similar set of 
experiments using the rabbit parameter sets. In the 
left panel, serosal osmolality is fixed at 200 mOsm/ 
liter and mucosal osmolality is the independent vari- 
able. The intersection of CR(CM) with the line of 
identity (short dashes) determines C*. The right pa- 
nel shows C R as a function of C s. These figures reveal 
both (CR) o (the y-intercepts) and the osmotic de- 
viations to be dependent on mucosal water per- 
meability. Reference to the tabulated results shows 
the linear analysis accurate to 5 % for the reference 
parameters. 

The transport of water against an adverse osmotic 
gradient by the rabbit epithelium is depicted in Fig. 
7. With the serosa fixed at 200mOsm/liter, mucosal 
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Fig. 6. Effect of bath osmolality on transport  tonicity (rabbit 
parameters): In the left panel, reabsorbate concentration is plotted 
as a function of mucosal  osmolality for five values of mucosal  
water permeability (1) reference; (2) reference x 0.1 ; (3) reference 
x 0.04; (4) reference x 0.02; (5) reference x 0.01). The dashed line is 
C R = C O + C M. Both (CR) o and C*  are sensitive functions of L M. In 
the right panel serosal osmolality is varied and C~ has been 
determined graphically 
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Fig. 7. Volume transport  against an adverse osmotic gradient. The 
effect of increasing mucosal  salt concentration on transepithelial 
volume flow is indicated for the rabbit model for five values of 
mncosal  water permeability (see Fig. 6). As predicted by the 
compartment  model, the strength of transport,  C, (J~(Co + C)=0)  
is quite insensitive to mucosal  water permeability 

bath osmolality is varied from 200 to 280 mOsm/liter 
and the computed J~ is plotted. As was suggested by 
even the elementary compartment model, the 
strength of transport (x-intercept) is remarkably inde- 
pendent of the mucosal water permeability -reflect- 
ing essentially solute transport rate and solute per- 
meabilities of the lateral interspace. For these experi- 
ments, however, the strength of transport estimated 
from the linear analysis is substantially in e r ror - re -  
flecting important nonlinearities of a compliant epi- 
thelium. 

Conclus ion 

The adequacy of a mathematical model used to repre- 
sent a leaky epithelium should be measured against 
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at least three sets of experimental observations: (1) 
The model must predict near isotonicity of bathing 
media when either of the media is at osmotic equilib- 
rium with the transport process. (2) The model's 
prediction of whole epithelial hydraulic conductivity 
should be comparable to that of the tissue. (3) The 
capacity of the tissue to transport water against an 
adverse osmotic gradient should be accurately simu- 
lated. 

Quite general considerations of transport indicate 
that the assessment of the isotonicity of transport 
requires several sets of solutions of the model equa- 
tions as the bathing media are varied about the point 
of equality. These calculations may yield either a 
direct numerical value for the osmotic deviations 
from isotonicity or else an estimate of the deviations 
using the computed transepithelial fluxes for equal 
bathing media and the derivatives of these fluxes with 
respect to bath osmolality. The single calculation 
with equal bathing media will, in general, not be 
sufficient to resolve the question of isotonicity. In 
particular, the reabsorbate tonicity for the epithelium 
betwen equal baths, (CR) o, may be quite a bit larger 
than the relevant osmotic deviations. Nevertheless, 
(CR) 0 appears to be an important feature of epithelial 
performance and it is useful to define 7 = Co/(CR)o the 
osmotic coupling coefficient of the epithelial model. 
It has been shown that the osmotic deviations may 
then be written as a product of two factors; (1-7), 
and another expression which appears to incorporate 
the solute and water permeabilities of the epithelium. 
Thus, the transport is "isotonic" for either a tightly 
coupled (7 ~ 1) or a sufficiently leaky system; the two 
effects are synergistic. Previous analyses in which 
tight coupling was a restriction imposed on models of 
isotonically transporting epithelia have resulted in 
difficulties with both compartmental and standing 
gradient type representations. 

We have found a nonelectrolyte compartment 
model of the lateral intercellular space to be very 
useful in the simulation of epithelial transport in a 
variety of experimental settings. A linearization of the 
Kedem-Katchalsky equations about the condition of 
zero flow permits a straightforward calculation of the 
composite membrane properties from the component 
parameters. This linear version of the nonlinear com- 
partment model is a numerically accurate approxi- 
mation into the range of experimental interest and 
offers insight into the major determinants of steady- 
state phenomena in osmotic experiments. 

It is found, for example, that intraepithelial solute 
polarization effects may profoundly influence the ob- 
served whole epithelial water permeabilities. This may 
serve to rationalize the discrepancy between the high 
cell membrane water permeabilities necessary to in- 
sure isotonic transport and the relatively low epi- 

thelial water permeabilities that have been measured 
in steady-state experiments. 

Steady-state transport of water against an adverse 
osmotic gradient may also be adequately simulated 
with a compartment model of the interspace. It may 
be the case, however, that the parameter set relevant 
to this experiment is different from that used in the 
analysis of isotonic transport. The introduction of a 
compliance relation, by which channel area is de- 
termined by channel pressure, provides a rational 
basis by which to incorporate into the model the 
effects of the experimental procedure on tissue geom- 
etry. 

Simulation of epithelial transport experiments 
with a polyelectrolyte distributed parameter model of 
interspace and cell largely confirms the qualitative 
predictions of the interspace compartment model. In 
particular, the deviations from reference for which 
either mucosal or serosal bath will be at transport 
equilibrium are shown to be independent of basement 
membrane solute permeability although crucially de- 
pendent on the water permeability of mucosal struc- 
tures. Thus, in our understanding of the phenomenon 
of "isotonic transport" there appears to be little role 
for solute entrapment within the lateral intercellular 
space. In contrast, however, the capability of the 
epithelium to transport water against an osmotic 
gradient depends precisely on this ability to retain 
solute within the interspace in order to maintain the 
local hypertonicity required in the scheme of Curran 
and Macintosh. 

Appendix 

Table A1-A. Parameter values for the rabbit epithelium ~ 

I. Mobilities 

D E UE DI UI 
C cmz ] 

(cmZ/sec) k ~ s e c !  

Na  0.993 x 10 -5 0.384 • 10 _6 0.103 x i0 -4 0.399 • 10 -6 
K 0.154x10 -4 0 .597x10 -6 0 . I59x10  ~ 0 .614x10 -6 
C1 0.164 x 1 0 - 4 - 0 . 6 3 6  x 10 -6 0.151 • 10- '* -0 .584  x 1 0 - 6  

II. Dimensions 

Apical ceil cross-section 678 ga 
Apical cell membrane  area (AM1) 5 cm2/cm 2 epithelium 
Apical channel area (A~t~)= 1.85 x 10 _4 cm2/cm 2 epithelium 
Ceil perimeter (S)=2494cm/cm 2 epithelium 
Cell height (cm) 

a These parameters have been chosen quite arbitrarily so as to 
yield concentrations and fluxes compatible with data on rabbit 
gallbladder (see Table A1-B). Sufficient data from the literature is 
not  available to justify this particular parameter set or exclude 
others. 
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Table A1-A. (cont.) 

L(t) = 0.002 El.0 + 0.8 (n,(0) - P~ ) ]  

Channel area (cm2/cm 2 epithelium) 

A t (x) = 0.056 [ 1.0 + 0.13 (Pt (L) - PI (L))] 

Channel  basement  membrane  area AEs = 0.2 x Ae(L ) 

Cell cross-section area At(x)= 1 . 0 - A t ( x  ) 

III. Membrane characteristics 

Channel  Channel  Cell Cell 
tight basement  apical basolateral 
junction membrane  

LpyzE Lpt s LvM I Lvr E = 3.0 
(cm/sec mmHg)  • 10 - 7 

3.0 • 10 .3 1.2 x 10 -4 3.0 x 10-7 Lvl s = 2.0 
•  .9 

tiME ffES ~YMI GIE ~ ~IS 

Na 0.9 0.002 0.998 0.998 
K 0.9 0.002 0.998 0.998 
C1 0.9 0.002 0.998 0.998 
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H ~  (cm/sec) HEs H~I HI~=HIs 

Na 4 .7x10  2 1 . 0 x 1 0 - 2  4 . 0 x 1 0 - 6  1 .0x l0_10  
K 8.5 x 10 -2 1.0 x 10 -2 6.0 • 10 -6 1.0 x 10 -5 
C1 1 .5x10 2 1 .0x10 .2 3 .0x10  .6  4 .0x10  - s  

Apical NaC1 co-transport is specified by the relations 

d~i(Na)  = HMx(Na) XM~(Na) + 0.8 H ~ ( N a )  XM~(C1 ) 

JMx(C1) = 0.SHMx(Na) X~I(Na) + H~I(CI) XMt(C1) 

where JMl(i) and X~u~(i ) are the fluxes and driving forces and 
HM~(i ) are permeability coefficients. 

IV. The sodium pump at the lateral membrane 

(mmol/seccm channel cm 2 epithelium) 

NSP(Na)=6.0 x 10 .2 [Cl (Na  , L /2) -0 .008]  

NSP(K) = -0.8NSP(Na) 

Table AI-B,  Steady-state solution for the open-circuited rabbit epithelium 

Intensive variables 

Voltage Pressure Osmolality Concentrat ion (tool/l) 
(mV) (mmHg) (Osm/1) 

Na K C1 

Mucosa 0.000 0.00 0.20000 0.09500 0.00500 0.10000 

Channel  0.471 8.74 0.20101 0.09855 0.00196 0.10051 
0.472 8.74 0.20134 0.09865 0.00202 0.10067 
0.435 8.74 0.20114 0.09830 0.00227 0.10057 

Cell -57 .17  0.07 0.20038 0.02660 0.07359 0.03801 
-57 .17  0.07 0.20020 0.02643 0.07367 0.03792 
-57 .17  0.07 0.20012 0.02638 0.07368 0.03788 

Serosa 0.290 0.00 0.20000 0.09500 0.00500 0.10000 

Flows (per sq cmepi thel ium) 

Current Volume flow Solute flow (mmol/sec) 
(mamp) (ml/sec) 

Na K C1 

Channel  - 0.298 D-03 0.461 D-05 - 0.160 D -08 0.484 D-07 0.499 D-07 
0.985D-02 0.986D-05 0.116D-05 - 0 . 1 6 0 D - 0 6  0.901D-06 
0.178D-01 0.175D-04 0.233D-05 - 0 . 3 9 4 D - 0 6  0.175D-05 

Cell 0.298D-03 0.129D-04 0.233D-05 - 0 . 3 3 3 D - 0 6  0.199D-05 
- 0 . 9 8 5 D - 0 2  0.760D-05 0.117D-05 - 0 . 1 2 4 D - 0 6  0.114D-05 
-0 .178D-01  - 0 . 8 2 5 D - 0 8  - 0 . 1 8 1 D - 1 0  0.109D-06 0.294D-06 

Reabsorbate tonicity = 0.234. 
Values of the variables for channel and cell are given for x = 0 . 0  (mucosal boundary), x =L/2, and x=L(se rosa l  
boundary). 



Table A2-A. Parameter values for the Necturus epithelium a 

I. Mobilities 

D~ U z D I U r 
( cm2 t 

(cm2/sec) \ ~ l  

Na 0.993 x 10 -s  0.384 x 10 -6 0.103 • 10 -4 0.399 • 10 -6 
K 0.154• 4 0.597x10 _6 0.159x10 4 0.614x10 6 
C1 0.164x10 4 - 0 . 6 3 6 x 1 0 - 6  0.151• 4 - 0 . 5 8 4 x i 0  6 

III. Membrane characteristics 

Channel Channel Cell Cell 
tight basement apical basolateral 
junction membrane 

LpMt Lpes L;eai Lvit = Lvr s 
(cm/sec mmHg) 

3.0x10 4 2.0x10 s 2 .0x10-8 2.0x10-8 

(YME ffES GMI GrE ~ (YlS 

Na 0.8 0.002 0.998 0.998 
K 0.7 0.002 0.998 0.998 
C1 0.8 0.002 0.998 0.998 

H u t  (cm/sec) Hts  HMr Hr~=Hrs 

Na 4 .7x l0  2 1.0x10 .2 4.0x10 7 1.0x10 - l~  
K 8 .5x l0  .2 1.0x10 2 6.0x10 .7 1.0x10 -6 
C1 1.5 x 10 .2 1.0 x 10 -2 3.0 x 10 -7 3.0 x 10 -7 

II. Dimensions 

Apical cell cross-section 678 gz 
Apical cell membrane area (AMr) 5 cma/cm 2 epithelium 
Apical channel area (AVE) = 1.85 x 10 -4 cm2/cm 2 epithelium 
Cell perimeter (S) = 2494 cm/cm 2 epithelium 
Cell height (cm) 

L(t) = 0 .002  [ 1.0 + 0.8 (Pr (0) - P~,)~ 

Channel area (cm2/cm 2 epithelium) 

A t (x) = 0.056 [ 1.0 + 0.13 (PE (L) - Pr (L))] 

Channel basement membrane area AEs=0.2 x At(L ) 

Cell cross-section area dr(x) = 1.0 -A t (x )  

a These parameters have been used in a previous model of 
Necturus gallbladder and have been justified in that paper (Wein- 
stein & Stephenson, 1979). 

Apicai NaC1 co-transport is specified by the relations 

J r1  (Na) = HMI(Na ) X~I(Na ) + 0.8 Hv , ( Na  ) X~I(C1 ) 

JMI(C1) = 0.8 Hvr (Na  ) Xvr(Na ) + Hut(C1 ) XMr(C1 ) 

where JMi(i) and XMr(i ) are the fluxes and driving forces and 
HMr(i ) are permeability coefficients. 

IV. The sodium pump at the lateral membrane 

(mmol/seccm channel cm 2 epithelium) 

NSP(Na)=7,5 x 10 3 [Cr(Na ' L/2)-0.008] 

NSP(K) = - 0.8 NSP(Na) 

Table A2-B. Steady-state solution for the open-circuited Necturus epithelium 

Intensive variables 

Voltage Pressure Osmolality Concentration (mol/1) 
(mV) (mmHg) (Osm/1) 

Na K C1 

Mucosa 0.000 0.00 0.20000 0.09750 0.00250 

Channel 0.663 3.33 0.20074 0.09838 0.00199 
0.666 3.33 0.20078 0.09839 0.00200 
0.661 3.33 0.20069 0.09830 0.00204 

Cell - 62.07 0.05 0.20017 0.02448 0.07560 
-62.07 0.05 0.20015 0.02446 0.07561 
-62.07 0.05 0.20014 0.02445 0.07561 

Serosa 0.656 0.00 0.20000 0.09750 0.00250 

Flows (per sq cm epithelium) 

Current Volume flow Solute flow (mmoi/sec) 
(mamp) (ml~ec) 

0.10000 

0.10037 
0.10039 
0.10035 

0.03746 
0.03745 
0.03745 

0.10000 

Na K C1 

Channel - 0.274D-02 0.479 D-06 - 0.201 D-07 0.749 D-08 0.157 D-07 
0.105D-02 0.777D-06 0.108D-06 -0 .317D-07 0.877D-07 
0.585D-03 0.107D-05 0.237D-06 -0 .714D-07 0.160D-06 

Cell 0.274D-02 0.500D-06 0.257D 06 - 0.595D-07 0.169D-06 
0.105D-02 0.203 D-06 0.129 D 06 - 0.203 D-07 0.974D-07 

- 0.585D-03 - 0.892D-07 0.279D 10 0.193 D-07 0.254D-07 

Reabsorbate tonicity = 0.378. 

Values of the variables for channel and cell are given for x = 0.0 (mucosal boundary), x = L/2, and x = L(serosal 
boundary), 
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